Skip to main content

Section outline

  • Session 1: Data Collection and Preparation
    • Importing and Exporting Data
    • Reading data from CSV, Excel, SQL databases, and APIs
    • Mathematical & statistical operations
    • Reshaping and stacking arrays
    • Hands-on Exercise: Solving mathematical problems using NumPy

    Session 2: Data Manipulation and Transformation
    • Filtering and selecting data from DataFrames
    • Sorting and ranking data
    • Grouping data and applying aggregate functions (groupby(), agg())
    • Merging, joining, and concatenating datasets
    • Hands-on Exercise: Checking for missing values, modifying data types, and sorting DataFrames

    Session 3: Data Aggregation & Multi-Indexing
    • Aggregating data using groupby()
    • Multi-indexing for hierarchical data
    • Hands-on Exercise:
      • Combining two datasets using joins
      • Grouping data by categorical variables and computing statistics

    Session 4: Exploratory Data Analysis (EDA)
    • Understanding the structure of datasets
    • Displaying and summarizing data using Pandas (head(), describe(), info())
    • Handling missing data (imputation, dropping rows/columns)
    • Data Cleaning: Removing duplicates, correcting data types
    • Feature Engineering: Creating new features, scaling, encoding categorical variables
    • Hands-on Exercise: Univariate, Bivariate, and Multivariate Data Analysis Case Studies