Skip to main content

Section outline

  • Session 1: Introduction to Generative AI (1 Hour)
    • Definition & Types (Text, Image, Video, Music)
    • Generative vs. Discriminative Models
    • Applications: GPT, BERT, Chatbots, Summarization, Translation
    Session 2: Introduction to Transformers (1.5 Hours)
    • Transformer Architecture & Attention Mechanism
    • Pre-training vs. Fine-tuning LLMs
    Session 3: Using Pre-trained Models (1.5 Hours)
    • Hugging Face Library & APIs
    • Hands-on Lab: Using pre-trained models for text generation
    Session 4: Text Generation with LLMs (2 Hours)
    • Sampling Strategies (Top-K, Top-P), Temperature Control
    • Fine-tuning LLMs for summarization & Q&A

    Hands-on Lab: Generating AI-based text using GPT & BERT

  • Session 5: Conversational AI & Chatbots (2 Hours)
    • Building chatbots using LLMs
    • Managing conversation context & personalization

    Hands-on Lab: Developing a GPT-based chatbot

    Session 6: Text Summarization & Translation (2 Hours)
    • Extractive vs. Abstractive Summarization
    • Machine Translation using Pre-trained LLMs

    Hands-on Lab: Summarizing long texts & translating content

    Session 7: Fine-Tuning & Customization (2 Hours)
    • Fine-tuning GPT & BERT on custom datasets
    • Data Preprocessing for LLMs

    Hands-on Lab: Fine-tuning a model for sentiment analysis

    Session 8: Challenges & Ethics in Generative AI (2 Hours)
    • Bias, Content Moderation, & Responsible AI
    • Controlling AI-generated outputs

    Discussion: Mitigating biases & ethical AI deployment