Skip to main content

Section outline

    • Session 1: Python Object-Oriented Design Style (1.5 Hours)
      • Classes & Objects – Understanding object attributes & instance methods
      • Using dir() to explore object attributes
      • Method Resolution Order (MRO) & Inheritance
      • Hands-on Lab: Developing a class hierarchy & applying MRO
    • Session 2: Decorators (1.5 Hours)
      • Understanding @classmethod, @staticmethod, and @property
      • Creating custom decorators for enhanced functionality
      • Hands-on Lab: Practical case studies using decorators
    • Session 3: Iterators and Generators (1.5 Hours)
      • Understanding iterators (iter(), next()) & their use cases
      • Recursive file access with generators & memory-efficient processing
      • Hands-on Lab: Case studies on efficient data processing with generators
    • Session 4: Python Memory Layout & Internals (1.5 Hours)
      • Overview of Python memory management & internal structures
      • Exploring CPython source code layout
      • Mapping from Python parser to objects
      • Hands-on Lab: Inspecting Python’s memory allocation & debugging performance
    • Session 1: Python Multidimensional Structures & Ordered Dictionaries (1.5 Hours)
      • Working with lists, tuples & dictionaries in multidimensional structures
      • Using OrderedDict for structured data handling
      • Hands-on Lab: Organizing complex datasets using Python dictionaries
    • Session 2: Requests & JSON Modules (1.5 Hours)
      • Introduction to the requests module for web integration
      • Downloading & processing URLs
      • Converting Python objects to JSON & vice versa
      • Hands-on Lab: Retrieving & parsing API data using JSON
    • Session 3: Python Arrays & NumPy Basics (1.5 Hours)
      • Introduction to NumPy & its role in scientific computing
      • Array indexing, slicing, and data types
      • Basic NumPy operations: Mathematical & statistical functions
      • Hands-on Lab: Performing data analysis with NumPy arrays
    • Session 4: Python Regular Expressions (Regex) (1.5 Hours)
      • Basics of Regular Expressions (BRE) & Extended Regex (ERE)
      • Searching, substituting, and validating text input
      • Hands-on Lab: Implementing regex for pattern matching & data validation