Skip to main content

Section outline

    • Intro to Pandas, Numpy, Scipy, Matplotlib

    • Data cleaning, missing values, time series handling

    • Machine Learning theory and Scikit-learn basics

    • Lab: Stock price and insurance dataset analysis

    • Linear, Ridge, Lasso Regression

    • Model evaluation: R2, RMSE, MAE

    • Gradient Descent Variants

    • Model pipelines, cross-validation, hyperparameter tuning

    • Lab: Predict home prices and insurance charges

    • Logistic Regression, Decision Trees, Random Forest, KNN, SVM

    • Evaluation: Accuracy, Precision, Recall, F1, ROC, AUC

    • Text preprocessing: TFIDF, N-grams, LDA, Spacy NLP

    • Lab: Fraud detection, IMDB sentiment analysis

    • Ensemble Methods: Bagging, Boosting, XGBoost, LightGBM

    • Dimensionality Reduction: PCA

    • Clustering: K-means, Hierarchical, Fuzzy C-means, HMM

    • Lab: Marketing analysis, retail sales clustering

    • Neural Networks, Deep Learning Basics

    • TensorFlow, Keras, CNNs

    • Optimization: ADAM, RMSProp, Xavier/He Initialization

    • Lab: MNIST & CIFAR-10 classification, deployment concepts